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The Fourier series representation of the equilibrium quasiprobability density function WS�� ,�� or Wigner
function of spin “orientations” for arbitrary spin Hamiltonians in a representation �phase� space of the polar
angles �� ,�� �analogous to the Wigner function for translational motion� arising from the generalized coherent
state representation of the density operator is evaluated explicitly for some nonaxially symmetric problems
including a uniaxial paramagnet in a transverse external field, a biaxial, and a cubic system. It is shown by
generalizing transition state theory to spins �i.e., calculating the escape rate using the equilibrium density
function WS�� ,�� only� that one may evaluate the reversal time of the magnetization. The quantum corrections
to the transition state theory escape rate equation for classical magnetic dipoles appear both in the prefactor
and in the exponential part of the escape rate and exhibit a marked dependence on the spin number. Further-
more, the phase-space representation allows us to estimate the switching field curves and/or surfaces for spin
systems because quantum effects in these fields can be estimated via Thiaville’s geometrical method �Phys.
Rev. B 61, 12221 �2000�� for the study of the magnetization reversal of single-domain ferromagnetic particles.
The calculation is accomplished �just as the determination of the equilibrium quasiprobability distributions in
the phase space of the polar angles� by calculating switching field curves and/or surfaces using the Weyl
symbol �c-number representation� of the Hamiltonian operator for given magnetocrystalline-Zeeman energy
terms. Examples of such calculations for various spin systems are presented. Moreover, the reversal time of the
magnetization allows us to estimate thermal effects on the switching fields for spin systems.
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I. INTRODUCTION

The interpretation of spin relaxation experiments com-
prises a fundamental problem of condensed phase physics
and chemistry yielding a well defined means of extracting
information concerning the structure and characteristics of
materials as a function of spin S so providing a bridge be-
tween microscopic and macroscopic physics. For example
�recalling that the number of spins in a sample roughly cor-
responds to the number of atoms�, on an atomic level,
nuclear magnetic and related spin resonance experiments,
etc., examine the time evolution of the individual elementary
spins1,2 of nuclei, electrons, muons, etc., while on mesos-
cales the time evolution of magnetic molecular clusters �i.e.,
spins 15–25�B� exhibiting relatively large quantum effects is
currently of interest in the fabrication of molecular magnets.3

On nanoscales single-domain ferromagnetic particles �giant
spins 104–105�B� with a given orientation of the particle
moment and permanent magnetization exist. These have
spawned very extensive magnetic recording industries, the
particles commonly used being on or near the microsize
scale. Finally, on the bulk macroscopic scale one has perma-
nent magnets �1020�B�, i.e., multidomain systems where
magnetization reversal occurs via the macroscopic processes
of nucleation, propagation and annihilation of domain walls.
Thus a well defined size scale ranging from the bulk macro-
scopic down to individual atom and spins naturally exists.

On an atomic level spin relaxation experiments in nuclear
magnetic or electron spin resonance are usually interpreted

via the phenomenological Bloch4 equations pertaining to the
relaxation of elementary spins subjected to an external mag-
netic field and interacting with an environment that is as-
sumed to be a heat reservoir at constant temperature T. On
mesoscales both the behavior of the hysteresis loop and the
relaxation or reversal time of the magnetization as a function
of S are of extreme importance in the observation of the
transition from microscopic to nanoscale physics as strong
quantum effects are likely to occur as the spin decreases
corresponding to the transition from a behavior reminiscent
of a single-domain ferromagnetic nanoparticle to that of a
molecular cluster. In this region the magnetization may re-
verse by resonant quantum tunneling as may be observed in
the corresponding hysteresis loop.5 In contrast on the nanos-
cale in single-domain ferromagnetic nanoparticles �originally
encountered in paleomagnetism in the context of past rever-
sals of Earth’s magnetic field, where depending on the size of
the particle, the relaxation time may vary from milliseconds
to millions of years� the relaxation is treated as classical and
proceeds by uniform rotation as conjectured by Néel6 and
Stoner and Wohlfarth.7 The relaxation time epochs represent-
ing the transition from giant Langevin paramagnetic behav-
ior �superparamagnetism� with no hysteresis involved via the
magnetic after effect stage �where the relaxation time for
changes in orientation of the magnetization is of the order of
the time of a measurement� to stable ferromagnetism where a
given ferromagnetic state corresponds to one of many pos-
sible such metastable states in which the magnetization vec-
tor is held in a preferred orientation. In the hypothesis of
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uniform or coherent rotation the exchange energy which is
supposed constant renders all spins collinear and the magni-
tude of the magnetization vector is constant in space hence
competition exists only between the anisotropy energy and
the Zeeman energy of the applied field since the magnetiza-
tion vector is perfectly aligned. This hypothesis should hold
for small sample sizes, i.e., single-domain particles, where
domain walls cannot form in the sample �i.e., it is energeti-
cally unfavorable to form them� and at high fields in samples
of low coercivity.8

As far as dynamics are concerned, Néel6 determined the
magnetization relaxation time, i.e., the time of reversal of the
magnetization of the particle, due to thermal agitation over
its internal magnetocrystalline anisotropy barrier from the
inverse escape rate over the barriers using transition state
theory �TST�9 as specialized to magnetic moments. Thus his
treatment given in detail for uniaxial anisotropy only is con-
fined to a discrete set of orientations for the magnetic mo-
ment of the particle. Moreover, the equilibrium distribution
is all that is ever required since the disturbance to the Bolt-
zmann distribution in the wells of the magnetocrystalline an-
isotropy potential due to the escape of the magnetization
over the barrier is ignored. In addition the effect of an exter-
nal applied field �Zeeman energy term� can be included
which is important because5 at low temperatures with zero
applied field the energy barrier between two states of oppo-
site magnetization is much too high for thermally agitated
escape to occur. The barrier height, however, may be reduced
by applying an external �biasing� field in the opposite direc-
tion to that of the magnetization of the particle. If the exter-
nal field is close to the switching field at zero temperature �at
which the magnetization reverses� thermal fluctuations are
then strong enough to overcome the anisotropy-Zeeman en-
ergy barrier hence the magnetization is reversed.

The static magnetization currents of single-domain par-
ticles are usually calculated using the method of Stoner and
Wohlfarth.7 Their procedure simply consists in minimizing
the free energy of the particle comprising the sum of Zeeman
and anisotropy energies with respect to the polar and azi-
muthal angles specifying the orientation of the magnetization
for each value of the applied field. The calculation always
leads to hysteresis because in certain field ranges10,11 two or
more minima exist and thermally agitated transitions be-
tween them are neglected. The value of the applied field, at
which the magnetization reverses, is as we saw above called
the switching field and the angular dependence of that field
with respect to the easy axis of the magnetization yields the
well known Stoner–Wohlfarth astroids.7 These were origi-
nally given for uniaxial shape anisotropy only which is the
anisotropy of the magnetostatic energy of the sample induced
by its nonspherical shape. The astroids represent a paramet-
ric plot of the parallel versus the perpendicular component of
the switching field which in the uniaxial case is the field that
destroys the bistable structure of the free energy. The astroid
concept was later generalized to arbitrary effective aniso-
tropy by Thiaville8 including any given magnetocrystalline
anisotropy and even surface anisotropy. He proposed a geo-
metrical method for the calculation of the energy of a particle
allowing one to determine the switching field for all values
of the applied magnetic field yielding the critical switching

field surface analogous to the Stoner–Wohlfarth astroids. A
knowledge5 of the switching field surface allows one to de-
termine the effective anisotropy of the particle and all other
parameters such as the frequencies of oscillations in the
wells of the potential, i.e., the ferromagnetic resonance fre-
quency, etc. We reiterate that these static calculations all ig-
nore thermal effects on the switching field, i.e., transitions
between the minima of the potential are neglected so that
they are strictly only valid at zero temperature.

In the context of thermal effects giving rise to transitions
between the potential minima we have mentioned that the
original dynamical calculations of Néel for single-domain
particles utilize classical transition state theory. In the more
recent treatment formulated by Brown10,11 �now known as
the Néel–Brown model�,5 which explicitly treats the system
as a gyromagnetic one and which includes nonequilibrium
effects due to the loss of magnetization at the barrier, the
time evolution of the magnetization of the particle M�t� is
described by a classical Langevin equation. This is the phe-
nomenological Landau–Lifshitz12 or Gilbert equation13,14

originally used to study the motion of a domain wall aug-
mented by torques due to random white noise magnetic fields
characterizing the giant spin-bath interaction. In the absence
of damping and stochastic terms this equation corresponds to
the Larmor equation for the motion of the giant spin so in-
cluding the gyromagnetic effects. The Langevin equation of
motion of the magnetization �which inter alia reconciles
Néel’s treatment of magnetization reversal with the general
theory of the Brownian motion15 and allows for a continuous
distribution of the magnetic moment orientations� yields10,11

the Fokker–Planck equation for the surface distribution of
the magnetic moment orientations on the unit sphere. More-
over, the reversal time may be asymptotically calculated �in
the high barrier limit as the relaxation time is of the order of
the time of measurement in an experiment� by means of the
Kramers escape rate theory9,16,17 as adapted to magnetic mo-
ments by Brown.10,11 The resulting asymptotic expressions
may then be compared with the exact results for the reversal
time yielded by the inverse of the smallest nonvanishing ei-
genvalue of the Fokker–Planck equation which may be ex-
tracted from the solution of that equation by matrix contin-
ued fraction methods as has been accomplished in Refs. 15
and 18 for many anisotropy potentials. The asymptotic ex-
pressions are valid in various dissipation regimes delineated
by the ratio of the magnetization energy lost per cycle of the
almost periodic motion of the magnetization at the lowest
saddle point energy of the potential to the thermal energy.17

Moreover, thermal effects on the switching field astroids due
to transitions between the minima of the potential may be
calculated by equating the inverse escape rate to the measur-
ing time in a given experiment and solving the resulting
implicit equation for the switching field numerically, com-
prising a classical treatment of the hysteresis loop at nonzero
temperatures.

Now Bean and Livingston19 have suggested that in a
single-domain particle besides the overbarrier Néel process
the magnetization may also reverse by macroscopic quantum
tunneling �macroscopic since a giant spin is involved�
through the magnetocrystalline-Zeeman energy potential
barrier.17 Hence the relaxation behavior as a function of spin
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size and the temperature and spin dependence of the associ-
ated Stoner–Wohlfarth hysteresis loops and astroids must be
studied in order to distinguish tunneling reversal from rever-
sal by thermal agitation. Thus systematic ways of introduc-
ing quantum effects into the magnetization reversal of a na-
nomesoscale particle �which in general may be restated as
quantum effects in parameters characterizing the decay of
metastable states in spin systems� are required. In general the
magnetization may reverse by quantum tunneling for rela-
tively small S or at very low temperatures for larger S which
may be observed in the behavior of the Stoner–Wohlfarth
asteroids. In general, so important are quantum effects in the
magnetization reversal in spin systems that diverse theoreti-
cal methods, e.g., WKB formalism,20 instantons; mapping
of the spin Hamiltonian onto equivalent particle
Hamiltonians;21,22 perturbation treatment of quantum-
classical escape rate transitions;23 etc., have been developed
in order to treat them. Yet another approach �that adopted
here� is the extension of Wigner’s phase-space representation
of the density operator24,25 �originally developed to obtain
quantum corrections to the classical distributions for point
particles in the phase space of positions and momenta� to the
description of spin systems �see, e.g., Refs. 26–33�.

The phase-space �or generalized coherent state� represen-
tation of the spin density matrix allows one to describe spin
systems in terms of a quasiprobability density function or
Wigner function WS�� ,�� of spin orientations in the phase
�here configuration� space �� ,��; � and � are the polar and
azimuthal angles, respectively, constituting the canonical
variables. The advantage of such a mapping of the density
matrix onto a c-number quasiprobability density function
WS�� ,�� as extensively used in quantum optics �see, e.g.,
Ref. 25� is that it is possible to show how WS�� ,�� evolves
as a function of the spin size S. In the limit of large spins,
WS�� ,�� reduces to the classical Boltzmann orientational
distribution naturally linking the equilibrium quantum and
classical spin regimes. The quasiprobability density WS�� ,��
was originally introduced by Stratonovich31 as part of a gen-
eral discussion of c-number quasiprobability distributions for
quantum systems in a representation space based on the sym-
metry properties of the underlying group. Examples are the
Heisenberg–Weyl group for particles and the SU�2� group
for rotations.

Agarwal and co-workers34,35 have explicitly given the
phase-space distributions for atomic angular momentum
Dicke states, coherent states, and squeezed states corre-
sponding to a collection of two-level atoms. In the magnetic
context, explicit equations for the equilibrium distributions
WS�� ,�� have been obtained for an assembly of spins S in a
uniform magnetic field H �Refs. 26 and 33� and spins in the
simplest uniaxial potential of the magnetocrystalline aniso-
tropy and Zeeman energy.36 Moreover, the results have been
used37 to generalize Néel’s classical calculation of magneti-
zation escape rates to include spin size effects for the sim-
plest uniaxial potential in a uniform external magnetic field
applied parallel to the anisotropy axis using quantum transi-
tion state theory as adopted to spins in the manner pioneered
by Wigner38 for point particles. However, because of the
limitation to axially symmetric potentials �e.g., one cannot

treat surface anisotropy energy, magnetoelastic anisotropy
energy, etc.� these calculations comprise a very restricted
treatment of spin size effects. The first step toward a general
treatment of these in the magnetic context is to calculate the
equilibrium phase-space distribution function WS�� ,�� as a
function of spin size for given nonaxially symmetric effective
anisotropy-Zeeman energy Hamiltonians which is one pur-
pose of this paper. Having determined the various equilib-
rium distributions corresponding to particular anisotropies,
our second purpose is to calculate the Stoner–Wohlfarth
magnetization curves represented in switching field astroid
form as a function of spin size for nonaxially symmetric
potentials. This calculation generalizes Thiaville’s8 geometri-
cal method �for the construction of switching field curves for
such potentials� to include quantum effects due to finite spin
size permitting one to study the behavior of the astroids in
the interesting magnetic cluster—single-domain particle
transition region. Finally, we estimate the reversal time of the
magnetization via the quantum generalization of TST �previ-
ously elaborated for the axially symmetric uniaxial
potential�.37 This will allow one to estimate temperature ef-
fects in the astroids and hysteresis loops within the limita-
tions imposed by quantum TST �moderate damping, etc.�.39

Our calculation proceeds, by generalizing the axially sym-
metric results described in Ref. 36 pertaining to a spin S
where the external uniform field H is parallel to the aniso-
tropy axis, to show how phase-space distributions of spins
can be obtained both analytically and numerically for various
nonaxially symmetric spin systems with equilibrium states
described by a canonical density matrix �̂ given by

�̂ = e−�ĤS/ZS. �1�

Here ZS=Tr�e−�ĤS� is the partition function for a spin system

with an arbitrary nonaxially symmetric Hamiltonian ĤS and
�=1 / �kT� is the inverse thermal energy. We shall at first
illustrate the analytical method by evaluating WS�� ,�� for an
assembly of noninteracting spins �essentially5 that corre-
sponding to the quantum treatment of superparamagnetism
so that in the absence of a field the spins are randomly ori-
ented� in an external constant field H with an arbitrary di-
rection in space so that the Hamiltonian of a spin is

�ĤS = − ���H · Ŝ = − 	��XŜX + �YŜY + �ZŜZ� , �2�

where �X ,�Y ,�Z are the direction cosines of H, � is the
gyromagnetic ratio, � is Planck’s constant, and 	 is the di-
mensionless external field parameter. Next we consider vari-
ous magnetic anisotropies establishing one or more preferred
orientations of the magnetization of an assembly of spins. In
particular, we shall consider a uniaxial paramagnet in a trans-
verse external field with

�ĤS = − 	ŜX − 
ŜZ
2 . �3�

In the classical limit, this Hamiltonian corresponds to the
Néel–Brown model, where a uniaxial single-domain particle
has two equivalent ground states of magnetization separated
by a magnetocrystalline anisotropy energy barrier �the 

term� in the presence of an applied transverse field which in
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the quantum case will enhance the tunneling probability.
Next we will consider biaxial- and cubic systems, with
Hamiltonians

�ĤS = − 
ŜZ
2 − ��ŜX

2 − ŜY
2� �4�

and

�ĤS = − 	ŜZ − 
�ŜX
4 + ŜY

4 + ŜZ
4�/2. �5�

Here � and 
 are dimensionless anisotropy barrier height
parameters. For clarity we summarize the basic features of
the Wigner–Stratonovich transformation of the density ma-
trix. Equilibrium distribution functions for the particular
Hamiltonians so determined may then be used to study the
equilibrium magnetization, switching field hysteresis curves,
etc., which require only a knowledge of these distributions.

II. WIGNER–STRATONOVICH TRANSFORMATION OF
THE DENSITY MATRIX

The phase-space distribution function WS
�s��� ,�� or

Wigner function on the surface of the unit sphere for a spin
system given by Stratonovich31 �see also Refs. 27 and 28� is
defined by the invertible map

WS
�s���,�� = Tr��̂ŵs��,��� , �6�

where s parametrizes quasiprobability functions of spins be-
longing to the SU�2� dynamical symmetry group considered
here; the Wigner–Stratonovich operator �or kernel� ŵs�� ,��
is defined as27,28

ŵs��,�� =� 4�

2S + 1 �
L=0

2S

�
M=−L

L

�CS,S,L,0
S,S �−sY

L,M
* T̂L,M

�S� . �7�

Here the asterisk denotes the complex conjugate, YL,M�� ,��
are the spherical harmonics,40 T̂L,M

�S� are the irreducible tensor
�polarization� operators with matrix elements40

�T̂L,M
�S� �m�,m =�2L + 1

2S + 1
CS,m,L,M

S,m� , �8�

and CS,S,L,0
S,S and CS,m,L,M

S,m� are the Clebsch–Gordan
coefficients.40 The density matrix �̂ may then be expressed
using the kernel equation �7� via the inverse transformation

�̂ =
2S + 1

4�
	


,�
ŵs��,��WS

�−s���,��sin �d�d� .

The function WS
�−s��� ,�� now allows us to calculate the av-

erage value 
Â�=Tr��̂Â� of an arbitrary spin operator Â be-
cause the WS

�−s��� ,�� provide the overlap relation28


Â� =
2S + 1

4�
	


,�
A�s���,��WS

�−s���,�,t�sin �d�d� ,

where A�s��� ,��=Tr�Âŵs�� ,��� is the Weyl symbol of the

operator Â. The parameter values s=0 and s= �1 corre-
spond to the Stratonovich31 and Berezin32 contravariant and

covariant functions, respectively �the latter are directly re-
lated to the P and Q symbols appearing naturally in the
coherent state representation; see Ref. 27 for a review�. Here
we consider WS

�−1��� ,�� only omitting everywhere the super-
script −1 in WS

�−1��� ,�� �WS
�1��� ,�� and WS

�0��� ,�� can be
treated in like manner�. We have chosen WS

�−1��� ,�� because
it alone satisfies the non-negativity condition required of a
true probability density function, viz., W�−1��� ,���0. The
quasiprobability densities WS

�1��� ,�� and WS
�0��� ,�� violate

this condition �they may take on negative values in the
present problem�. The relationship of the Wigner–
Stratonovich operator ŵ−1�� ,�� from Eq. �7� to various
equivalent forms26 of the generalized coherent state repre-
sentation of the density matrix is given in the Appendix.

The phase-space distribution may be presented for arbi-
trary S in �finite� Fourier series form �which emphasizes the
relationship with the conventional infinite Fourier series rep-
resentation of the associated classical Boltzmann distribution
in terms of spherical harmonics�, namely,

2S + 1

4�
WS��,�� = �

L=0

2S

�
M=−L

L


YL,M�Y
L,M
* ��,�� , �9�

where 
YL,M�= ��2S+1� /4���0
2��0

�YL,M�� ,��WS�� ,��
�sin �d�d� are the equilibrium values of the spherical har-
monics given explicitly by


YL,M� =�2S + 1

4�
CS,S,L,0

S,S aL,M . �10�

Here the coefficients aL,M �representing expectation values of

T̂L,M
�S� in a state described by the density matrix �̂� are40

aL,M = 
T̂L,M
�S� � = Tr��̂T̂L,M

�S� � . �11�

Equation �9� is a general result valid for an arbitrary spin
system with equilibrium states described by the canonical
density matrix �̂ given by Eq. �1� with an arbitrary model

Hamiltonian ĤS�ŜX , ŜY , ŜZ� expressed in terms of the spin

operators ŜX, ŜY, and ŜZ. The spin operators can be written

using the polarization operators T̂1,M
�S� as40

ŜX = a�T̂1,−1
�S� − T̂1,1

�S��, ŜY = ia�T̂1,−1
�S� + T̂1,1

�S��, ŜZ = �2aT̂1,0
�S� ,

�12�

where a=�S�S+1��2S+1� /6. Thus using Eqs. �8� and �12�,
we can �i� present the Hamiltonian ĤS in explicit matrix
form, next, �ii� evaluate numerically the density matrix �̂
from Eq. �1�, and then �iii� calculate the coefficients aL,M
from Eq. �11� and so the Fourier coefficients 
YL,M� from Eq.
�10�, having thus estimated 
YL,M�, we can �iv� calculate the
phase-space distribution WS�� ,�� from the finite Fourier se-
ries equation �9� for any particular S. Moreover, the results
can be presented in closed form whenever the equilibrium

spin density matrix �̂=e−�ĤS /ZS or its elements are given
explicitly.

According to the finite Fourier series equation �9�, all the
statistical moments 
YL,M� are required �in general� to evalu-
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ate WS�� ,�� for given S. However, for calculation of par-
ticular observables such as the magnetization only a few mo-
ments may be necessary. For example, in the calculation of

the longitudinal, 
ŜZ�, and transverse, 
ŜX� and 
ŜY�, compo-
nents of the magnetization, noting the correspondence rules

of operators ŜX, ŜY, ŜZ and Weyl symbols �c numbers�
SX�� ,��, SY�� ,��, SZ�� ,�� in the phase space �� ,��,28

namely,

ŜX → SX = �2�S�S + 1�/3�
L=0

2S

�
M=−L

L

CS,S,L,0
S,S Y

L,M
*

�Tr��T̂1,−1
�S� − T̂1,1

�S��T̂L,M
�S� �

= �2�/3�S + 1��Y1,−1 + Y1,1� ,

ŜY → SY = i�2�S�S + 1�/3�
L=0

2S

�
M=−L

L

CS,S,L,0
S,S Y

L,M
*

�Tr��T̂1,−1
�S� + T̂1,1

�S��T̂L,M
�S� �

= i�2�/3�S + 1��Y1,−1 − Y1,1� ,

and

ŜZ → SZ = �4�S�S + 1�/3�
L=0

2S

�
M=−L

L

CS,S,L,0
S,S Y

L,M
* Tr�T̂1,0

�S�T̂L,M
�S� �

= �4�/3�S + 1�Y1,0,

we have


ŜX� = �2�/3�S + 1��
Y1,−1� + 
Y1,1�� , �13�


ŜY� = i�2�/3�S + 1��
Y1,−1� − 
Y1,1�� , �14�

and


ŜZ� = �4�/3�S + 1�
Y1,0� . �15�

Here we have used the property of polarization operators40

Tr�T̂L1,M1

�S� T̂L2,M2

�S� � = �− 1�M1�L1,L2
�M1,−M2

. �16�

Thus only 
Y1,0� and 
Y1,�1� are now required.
The results obtained so far are entirely formal. Now we

shall demonstrate how the phase-space distributions for par-
ticular spin systems can be obtained for all S �integer and
half-integer�.

III. SPIN IN A UNIFORM EXTERNAL FIELD

As the simplest example of the Fourier series method em-
bodied in Eqs. �9� and �10�, we calculate the Wigner function
of a spin in an external uniform field with Hamiltonian

�ĤS = − 	��XŜX + �YŜY + �ZŜZ� ,

which yields the conventional theory of superparamag-

netism. Here the matrix elements of ĤS can be given in
closed form, viz.,

�ĤS�m�,m = A�−��m,m�+1 + A�+��m,m�−1 − �Z	m�m,m�

where A���=−�1 /2�	��X� i�Y���S�m��S�m+1�. Further-

more, for any particular S the density matrix �̂S=e−�ĤS /ZS
can be presented as a finite series of spin operators �using the
commutation relations for spin operators�.40 For example, for
S= 1

2 , S=1, etc., one has

�̂1/2 =
1

Z1/2
�cosh�	/2�Î + 2 sinh�	/2���XŜX + �YŜY + �ZŜZ�� ,

�17�

�̂1 =
1

Z1
�Î + sinh 	��XŜX + �YŜY + �ZŜZ�

+ 2 sinh2�	/2���XŜX + �YŜY + �ZŜZ�2� , �18�

etc., where Î is the identity matrix. The corresponding phase-
space distribution WS�� ,�� can then be calculated �after te-
dious matrix algebra best accomplished, e.g., via MATH-

EMATICA� from Eqs. �9�–�12� using the properties of
polarization operators such as Eq. �16� and40

Tr�T̂L1,M1

�S� T̂L2,M2

�S� T̂L3,M3

�S� �

= �− 1�2S+L3+M3��2L1 + 1��2L2 + 1�

�CL1,M1,L2,M2

L3,−M3 
L1 L2 L3

S S S
� , �19�

where � L1 L2 L3

S S S
� is a 6j symbol.40 The finite series can then be

summed so that the distribution WS�� ,�� can be written in
closed form for arbitrary spin values S as

WS��,�� = �cosh�	/2� + sinh�	/2�F��,���2S/ZS, �20�

where F�� ,��=�X sin � cos �+�Y sin � sin �+�Z cos � and

ZS =
2S + 1

4�
	

0

� 	
0

2�

�cosh�	/2�

+ sinh�	/2�F��,���2S sin �d�d�

= sinh��S + 1/2�	�/sinh�	/2� �21�

is the partition function. For three particular cases

�X = 1, �Y = 0, �Z = 0; �X = 0, �Y = 1,

�Z = 0; and �X = 0, �Y = 0, �Z = 1,

Eq. �20� reduces to the known equations of Takahashi and
Shibata.33 The average equilibrium magnetization of a spin,

namely, MH=g�B
Ŝ ·H�, is

MH = g�B
�2S + 1��S + 1�

4�

�	
0

� 	
0

2�

F��,��WS��,��sin �d�d�

= g�BSBS�	S� , �22�
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where �B is the Bohr magneton, g is the Landé factor, and
BS�x� is the Brillouin function defined as27

BS�x� =
2S + 1

2S
coth�2S + 1

2S
x� −

1

2S
coth� x

2S
� . �23�

In the classical limit, �→0, S→�, and �S=const, the equi-
librium distribution WS�� ,�� �which now becomes a
conventional Fourier series� and the Brillouin function
BS�x� tend, respectively, to the Boltzmann distribution
�2S+1�WS�� ,�� /4�→Zcl

−1eS	F��,�� and the Langevin func-
tion BS�x�→L�x�=coth�x�−1 /x, where Zcl is the classical
partition function. This comprises the usual treatment of su-
perparamagnetism, the only difference from the conventional
theory of paramagnetism being that the magnetic moments
of the particles are enormous. Quantum effects become im-
portant when ���H /S�1, i.e., either at small S or at very
low temperatures T or for an intense field H when Eq. �23�
applies.

IV. UNIAXIAL PARAMAGNET IN A TRANSVERSE FIELD

As a further example of the application of the finite Fou-
rier series equations �9� and �10�, we calculate the Wigner
function of a spin in a transverse external field with Hamil-
tonian �i.e., the Néel–Brown model with a transverse applied
field�

�ĤS = − 	ŜX − 
ŜZ
2

�known otherwise as the Lipkin–Meshkov Hamiltonian41�.
For small S, the density matrix �̂S=e−�ĤS /ZS can be given in
closed form. For example, for S=1 /2, S=1, etc., we have
after some matrix algebra

�̂1/2 =
e
/4

Z1/2
�Î cosh�	/2� + 2ŜX sinh�	/2�� , �24�

�̂1 =
1

Z1
�Î�e
 − 
A� + A�	ŜX + 
ŜZ

2�

+ �e
/2 cosh �	2 + 
2/4 − e
 + 
A/2�ŜX
2� , �25�

etc., where A=e
/2 sinh �	2+
2 /4 /�	2+
2 /4,

Z1/2 = 2e
/4 cosh�	/2� and Z1 = e
 + 2e
/2 cosh �	2 + 
2/4.

The corresponding equations for the phase-space distribution
WS�� ,�� can be obtained from Eqs. �9�–�12�, �16�, and �19�
and are given by

W1/2��,�� =
1

2
�1 + tanh�	/2�sin � cos �� , �26�

W1��,�� =
1

2Z1
�e
�1 − sin2 � cos2 ��

+ e
/2 cosh �	2 + 
2/4�1 + sin2 � cos2 �� + �
A/2�

��cos 2� + sin2 � cos2 � + �4	/
�sin � cos ��� ,

�27�

W3/2��,�� =
e5
/4

4Z3/2
�e	/2f+��,�� + e−	/2f−��,��� , �28�

etc., where

Z3/2 = 2e5
/4�e−	/2 cosh �	2 + 	
 + 
2

+ e	/2 cosh �	2 − 	
 + 
2�

and

f���,�� =

 sinh �	2 � 	
 + 
2

�	2 � 	
 + 
2 �2�1 � sin3 � cos3 ��

− 3 sin2 ��1 � sin � cos �� �
	



�1 � sin � cos ��

��1 � 4 sin � cos � + sin2 � cos2 ���
+ 2 cosh �	2 � 	
 + 
2�1 � sin3 � cos3 �� .

As S increases, the analytical equations for the Wigner func-
tion WS�� ,�� become more and more complicated and thus
rather impractical because WS�� ,�� may always be calcu-
lated much faster numerically from Eq. �9�.

Calculations of �V�� ,��=const−ln WS�� ,�� �V�� ,��
has the meaning of an “effective” free energy potential� are
shown in Fig. 1 for various values of S and 
�=
S2=5 and
h=	 / �2
S�=0.1. In the classical limit �S→�, 	S=const
=	�, 
S2=const=
��, the effective potential V�� ,�� be-
comes the classical free energy Vcl�� ,�� given by

�Vcl��,�� = const − 
��cos2 � + 2h cos � sin �� ,

which is also shown in Fig. 1 for comparison. The effective
potential V�� ,�� �just as the classical free energy Vcl�� ,���
has two equivalent minima and one saddle point in the plane
�=0 at �=� /2; the potential characteristics �such as the
shape and barrier heights� strongly depend on S, e.g., the
smallest barrier height increases with increasing S from 0 �at
S= 1

2 � to its classical value 
��1−h2�.

S = 1

X

Z ZS = 2

X
S → ∞S = 4 Z

X

Z

X

FIG. 1. �Color online� Three-dimensional �3D� plot of �V�� ,��
for 
�=10, h=0.1, and various values of S=1, 2, 4, and S→�
�classical limit�.
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V. BIAXIAL SYSTEM

We now calculate the Wigner function of a biaxial spin
system with Hamiltonian

�ĤS = − 
ŜZ
2 + ��ŜX

2 − ŜY
2� �29�

commonly used to describe the magnetic properties of an
octanuclear iron�III� molecular cluster Fe8.5,42 For Fe8, S
=10, 
T=0.275 K, and �T=0.046 K.42 The density matrix

�̂S=e−�ĤS /ZS can be given in simple closed form for small S.
For example, for S= 1

2 , S=1, etc., we have after matrix alge-
bra

�̂1/2 =
e
/4

Z1/2
Î , �30�

�̂1 =
1

Z1
�Î + �e
 cosh � − 1�ŜZ

2 − e
 sinh ��ŜX
2 − ŜY

2�� ,

�31�

�̂3/2 =
e5
/4 sinh �3�2 + 
2

Z3/2�3�2 + 
2
�
ŜZ

2 − ��ŜX
2 − ŜY

2�

+ ��3�2 + 
2 coth �3�2 + 
2 − 5
/4�Î� , �32�

where Z1/2=2e
/4, Z1=1+2e
 cosh �, and Z3/2
=4e5
/4 cosh �3�2+
2. The corresponding equations for
WS�� ,�� are

W1/2��,�� = 1/2, �33�

W1��,�� =
1

2Z1
�sin2 � + e
 cosh ��1 + cos2 ��

− e
 sinh � sin2 � cos 2�� , �34�

W3/2��,�� =
1

4
+

3 tanh �3�2 + 
2

8�3�2 + 
2
�
cos2 � − �sin2 � cos 2�

− 
/3� . �35�

The effective potential �V�� ,��=const−ln WS�� ,�� is
shown in Fig. 2 for S=2, 
�=
S2=5, and ��=�S2=5. In the
classical limit �S→�, ��=�S2=const, and 
S2=const=
��,
the effective potential V�� ,�� again tends to the classical
free energy Vcl�� ,�� given by

�Vcl��,�� = const − �
� cos2 � − �� cos 2� sin2 �� .

The effective potential V�� ,�� �just as Vcl�� ,��� has two
equivalent minima and two saddle points in the plane XZ at
�=� /2; potential characteristics �such as the shape and bar-
rier heights� again strongly depend on S. In particular, the
barrier height increases with increasing S from 0 �at S=1 /2�
to its classical value 
�.

VI. CUBIC SYSTEM

Finally, we calculate the Wigner function of a cubic spin
system in a longitudinal dc field with Hamiltonian

�ĤS = − 	SZ − 
�ŜX
4 + ŜY

4 + ŜZ
4�/2,

where 
 is the dimensionless anisotropy parameter, which
may be either positive or negative. For small S, the density

matrix �̂S=e−�ĤS /ZS can again be given in closed form. For
example, for S=1 /2, S=1, etc., we have

�̂1/2 =
e3
/32

Z1/2
�Î cosh�	/2� + 2ŜZ sinh�	/2�� , �36�

�̂1 =
e


Z1
�Î + sinh 	ŜZ + 2 sinh2�	/2�ŜZ

2� , �37�

�̂3/2 =
e123
/32

Z3/2

1

8
�9 cosh�	/2� − cosh�3	/2��Î

+
1

12
�27 sinh�	/2� − sinh�3	/2��ŜZ + 2 cosh�	/2�

��sinh�	/2�ŜZ�2 +
4

3
�sinh�	/2�ŜZ�3� , �38�

�̂2 =
1

Z2

�e12
 −

6


	
R�Î +

1

6
�8e9
 sinh 	 − R�ŜZ

+
1

12
�16e9
 cosh 	 − 15e12
 − P +

93


4	
R�ŜZ

2

−
1

6
�2e9
 sinh 	 − R�ŜZ

3

+
1

12
�3e12
 − 4e9
 cosh 	 + P −

9


4	
R�

�ŜZ
4 +




4	
R�ŜX

4 + ŜY
4�� , �39�

where

Z1/2 = 2 cosh�	/2�e3
/32, Z1 = �1 + 2 cosh 	�e
,

Z3/2 = 4 cosh�	/2�cosh 	e123
/32,

Z2 = e9
�e3
 + 2 cosh 	 + 2e3
/2 cosh�2	�1 + �3
/4	�2�� ,

P = e21
/2 cosh�2	�1 + �3
/4	�2� ,

FIG. 2. �Color online� 3D plot of �V�� ,�� for S=2, 
�=5, and
��=2.
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R = e21
/2 sinh�2	�1 + �3
/4	�2�/�1 + �3
/4	�2.

The corresponding equations for WS�� ,�� are

W1/2��,�� = e3
/32�cosh�	/2� + sinh�	/2�cos ��/Z1/2,

�40�

W1��,�� = e
�cosh�	/2� + sinh�	/2�cos ��2/Z1, �41�

W3/2��,�� = e123
/32�cosh�	/2� + sinh�	/2�cos ��3/Z3/2,

�42�

W2��,�� =
1

8Z2
�2e9
 sin2 ��4 sin 	 cos �

+ cosh 	�3 + cos 2��� + 3e12
 sin4 �

+ P�8 cos2 � + sin4 ��

+ 4R�cos � + cos3 � + �3
/16	�cos 4� sin4 ��� .

�43�

For 	=0, Eq. �43� yields

W2��,�� =
1

2�3 + 2e3
�
�1 + e3
 + �e3
 − 1��sin2 2�

+ sin4 � sin2 2��/4� . �44�

The effective potential �V�� ,��=const−ln WS�� ,�� is
shown in Fig. 3 for 
�=
S4= �8, 	=0, and S=4. In the
classical limit �S→�, 
S4=const=
��, the effective poten-
tial once more tends to the classical free energy Vcl�� ,��
given by

�Vcl��,�� = const + 
��sin2 2� + sin4 � sin2 2�� .

For positive anisotropy constant 
�0, the cubic potential
has 6 minima �wells�, 8 maxima, and 12 saddle points. For

�0, the maxima and minima are interchanged. The poten-
tial characteristics �such as the shape and barrier heights�
again strongly depend on S. In particular, the smallest barrier
height again increases with increasing S from 0 �at S= 1

2 � to
its classical value 
�.

It is apparent from the examples chosen that the Wigner–
Stratonovich transformation allows one to calculate the equi-
librium phase-space distribution �Wigner function� via its fi-
nite Fourier series representation for any given anisotropy.
The results may be used to estimate the reversal time of the
magnetization from TST as well as to include thermal effects

in the quantum generalization of Thiaville’s calculation of
switching field curves and/or surfaces. However, in accor-
dance with the stated objectives of the paper we shall first
demonstrate how the phase-space representation of the
Hamiltonian operator for a given spin system may be used to
calculate switching field curves as a function of spin at zero
temperature.

VII. SWITCHING FIELD CURVES

We recall that the first calculation of the magnetization
reversal of single-domain ferromagnetic particles with
uniaxial anisotropy subjected to an applied field was made
by Stoner and Wohlfarth7 with the hypothesis of coherent
rotation of the magnetization and zero temperature so that
thermally induced switching between the potential minima is
ignored. In the simplest uniaxial anisotropy as considered by
them, the magnetization reversal occurs at the particular
value of the applied field �switching field� which destroys the
bistable nature of the potential. The parametric plot of the
parallel vs the perpendicular component of the switching
field then yields the famous astroids. In the general approach
to the calculation of switching curves via the geometrical
method of Thiaville,8 the switching field curves or surfaces
may be constructed for particles with arbitrary anisotropy at
zero temperature. These calculations again, however, pertain
to particles where the magnetization may be represented by a
single macrospin �coherent rotation of the magnetization�. In
order to generalize Thiaville’s geometrical method8 to in-
clude spin size effects, we have to calculate the Weyl symbol

�c number� HS�� ,�� corresponding to the Hamiltonian ĤS,
which is defined as

HS��,�� = Tr�ĤSŵ−1��,���

=� 4�

2S + 1
Tr�ĤS�

L=0

2S

�
M=−L

L

CS,S,L,0
S,S Y

L,M
* T̂L,M

�S� � .

�45�

Then treating the c-number representation HS�� ,�� as an
arbitrary potential energy one may in principle calculate the
switching fields using Thiaville’s method.8 We illustrate this
by considering the uniaxial

�ĤS
un = − 
1ŜZ

2 , �46�

biaxial

�ĤS
bi = − 
1SZ

2 + ��ŜX
2 − ŜY

2� , �47�

cubic

�ĤS
cub = − 
2�ŜX

4 + ŜY
4 + ŜZ

4�/2, �48�

and mixed anisotropy

�ĤS
mix = − 
1ŜZ

2 − 
2ŜZ
4 + ��Ŝ+

4 + Ŝ−
4� �49�

Hamiltonians. The mixed anisotropy Hamiltonian �49� is
commonly used to describe the magnetic properties of the
dodecanuclear manganese molecular cluster Mn12.42 For

FIG. 3. �Color online� 3D plot of �V�� ,�� for positive �left�
and negative �right� cubic anisotropies at S=4 and 	=0.
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Mn12, S=10, 
1T=0.56 K, 
2T=1.1�10−3 K, and �T
= �3�10−5 K.42

The Weyl symbols HS
un�� ,��, HS

bi�� ,��, HS
cub�� ,��, and

HS
mix�� ,�� corresponding to the Hamiltonian operators

�46�–�49� can be calculated from the general finite Fourier
series representation equation �45� noting Eqs. �16� and �19�.
We obtain after some algebra

HS
un = − 
1S�S − 1/2�cos2 � − 
1S/2, �50�

HS
bi = − 
1S��S − 1/2��cos2 � − � cos 2� sin2 �� + 1/2� ,

�51�

HS
cub = − 
2S�2S3 + 3S − 1�/4 + 
2S�S − 1��S − 1/2��S − 3/2�

��sin2 2� + sin4 � sin2 2��/4, �52�

and

HS
mix = −

S

4
�2
1 + 
2�3S − 1�� − S�S − 1/2��
1 + 
2�3S − 2��

�cos2 � −
1

2
S�S − 1��S − 3/2��S − 1/2��2
2 cos4 �

− � sin4 � cos 4�� , �53�

respectively, where �=� /
1. If we further suppose that a
uniform external magnetic field H is applied along the x-z

plane, the Zeeman term operator �ĤS=−	 sin �ŜX

−	 cos �ŜZ transforms to the phase space as

�HS = − 	S cos�� − �� , �54�

where � is the angle between the applied field H and the Z
axis. Thus the switching fields hun, hbi, and hcub in the x-z
plane �i.e., for �=0� can be calculated from Eqs. �50�–�52�
so that

hun = Qunhun
cl , hbi = Qbihbi

cl, and hcub = Qcubhcub
cl ,

�55�

where the quantum correction factors Qun, Qbi, and Qcub and
corresponding classical switching fields hun

cl , hbi
cl, and hcub

cl are

Qun = Qbi = �S − 1/2�/S , �56�

Qcub = �S − 1/2��S − 1��S − 3/2�/S3,

hun
cl = �sin3 �,cos3 �� ,

hcub
cl = �sin3 ��3 cos 2� + 2�,cos3 ��3 cos 2� − 2�� ,

hbi
cl = �sin ��2� + f����,cos ��2 − f����� , �57�

and f���= �1+��sin2 �+ �2�− �1+��sin2 ��. For mixed an-
isotropy, the corresponding equation for the switching field
hmix is much more complicated and must be calculated nu-
merically. The parametric plots of the parallel hZ vs the per-
pendicular hX component of the switching field yield the as-
troids and hypocycloids for uniaxial and cubic systems,
respectively, along with the corresponding quantum correc-

tion factors �see Figs. 4�a� and 4�c��. For biaxial and mixed
anisotropies, the behavior of the switching fields is much
more involved and is shown in Figs. 4�b� and 4�d�. In general
the figures indicate that the switching field amplitudes in-
crease markedly with increasing S tending to their classical
limiting values as S→� corresponding to diminishing tun-
neling effects as that mechanism is gradually shut off.

We emphasize that the above calculations because they
are entirely based on the phase-space representation of the
Hamiltonian operator ignore thermal effects. To account for
these it is necessary to estimate the temperature dependence
of the reversal time of the magnetization which may be ac-
complished using transition state theory �TST�. The estima-
tion of the reversal time of magnetization in the context of
TST is, probably, the most promising application of the
phase-space approach. TST as we shall now see again in-
volves only the quantum equilibrium distributions, which we
have calculated in the preceding sections.

VIII. TRANSITION STATE THEORY REVERSAL TIME
OF THE MAGNETIZATION

We have mentioned that TST affords the simplest possible
description of quantum corrections to thermally activated de-
cay due to thermal agitation. In applying TST to classical
spins �i.e., magnetic moments ��, in order to evaluate the
escape rate from a metastable orientation i to another meta-
stable orientation j, we suppose that the free energy V�� ,��
of a magnetic moment � has a multistable structure with
minima at ni and n j separated by a potential barrier with a
saddle point at n0. In the low temperature limit �high barrier

-1 1

-1

1

-1 1

-1

1

-1 1

-1

1

-1 1

-1

1

(a) (b)

(c) (d)

hZ

hZ

hX

hX

hZ

hZ

hX

hX

FIG. 4. Spin dependence of switching field curves for �a�
uniaxial, �b� biaxial at 
1 /�=0.25, �c� cubic, and �d� mixed �at

1 /
2=0.5 and �=0� anisotropies calculated at S=2 �solid lines�, 5
�dashed lines�, and S→� �dotted lines; classical limit�.
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approximation�, as far as TST is concerned, the escape rate
�cl may be estimated as

�cl � I0
cl/Zi

cl, �58�

where Zi
cl��welle

−�V��,�� sin �d�d� is the well partition
function and I0

cl is the total current of the �magnetization�
representative points at the saddle point. In order to evaluate
the well partition function Zi

cl, we suppose10,11 that the free
energy V near the minimum ni can be approximated as

Vcl = Vcl�nk� + 1
2 �c1

�k��u1
�k��2 + c2

�k��u2
�k��2� , �59�

where �u1
�i�, u2

�i�, u3
�i�� denote the direction cosines of � near

ni, c1
�i�=�2Vcl /�u1

�i�2, and c2
�i�=�2Vcl /�u2

�i�2. Hence

Zi
cl � 	

well

e−�Vcl�u1
�i�,u2

�i��du1
�i�du2

�i� �
2�

��c1
�i�c2

�i�
e−�V�ni�.

�60�

The total current I0
cl may be estimated as �by supposing that

the x axis of the local coordinate system at the saddle point
n0 is in the same direction as the probability current J0 over
the saddle and recalling that the Boltzmann distribution
holds everywhere�

I0
cl � 	

saddle


�u1
�0����u2

�0��J0�u1
�0�,u2

�0��e−�Vcl�u1
�0�,u2

�0��du1
�0�du2

�0�

�
�

��
	

saddle

de−�Vcl �
�

��
e−�Vcl�n0�, �61�

where J0=−�� /���Vcl /�u1
�0�= �� /���� ln�e−�Vcl� /�u1

�0� is a
divergence-free current density at the saddle point and 
 is
the unit step function. Hence, noting Eqs. �60� and �61�, Eq.
�58� yields the classical TST formula for spins

�cl � ��i/2��e−��Vcl
, �62�

where the attempt frequency

�i = ��c1
�i�c2

�i�/� �63�

is the well �precession� frequency and �Vcl=Vcl�n0�
−Vcl�ni� is the potential barrier height �the determination of
which involves detailed knowledge of the energy landscape�.

The quantum escape rate �i for a spin from a metastable
orientation i to another metastable orientation j as deter-
mined by quantum TST may be given by an equation similar
to Eq. �58�, viz.,

�i � I0/Zi. �64�

However, the well partition function Zi and the total current
over the saddle point I0 must now be evaluated using the
equilibrium phase-space distribution function W�� ,�� in-
stead of the Boltzmann distribution �exp�−�Vcl�� ,���. Just
as uniaxial systems,36 the distribution W can be approxi-
mated in the vicinity of the metastable minimum ni by the
spin in a uniform field or Zeeman energy distribution given
by Eq. �20�, viz.,

WS��,�� = WS�ni�e−S	i�cosh�	i/2� + sinh�	i/2�Fi��,���2S,

�65�

where Fi�� ,��=�Xi
sin � cos �+�Yi

sin � sin �+�Zi
cos �

with Fi��i ,�i�=1, �Xi
, �Yi

, �Zi
are the direction cosines of the

effective field Hi=−�V /�� in the vicinity of minimum ni,
and �=��S is the magnetic moment, 	i=����i� is the nor-
malized precession frequency �i=�Hi. All the foregoing re-
sults rely on the fact that the dynamics of a spin near ni at
low temperatures comprise steady precession in the effective
magnetic field Hi in the well. The precession frequency �i
can be estimated from the well angular frequency �i.e., at-
tempt frequency� Eq. �63�, where the coefficients c1

�i� and c2
�i�

are determined from the Taylor series expansion of the Weyl

symbol HS�� ,�� of the Hamiltonian ĤS of a spin

HS = HS�nk� + 1
2 �c1

�k��u1
�k��2 + c2

�k��u2
�k��2� �66�

��i can also be found experimentally by measuring the criti-
cal switching field surface and then applying Thiaville’s geo-
metrical methods�. Noting Eq. �21�, we can now estimate the
well partition function as

Zi � WS�ni�e−S	i	
well

�cosh�	i/2�

+ sinh�	i/2�Fi��,���2S sin �d�d�

= 4�WS�ni�e−S	i
sinh��S + 1/2�	i�

�2S + 1�sinh�	i/2�
�

2�WS�ni�
�S + 1/2��1 − e−	i�

.

�67�

The current I0 at the saddle point n0 may also be estimated
just as in Eq. �61�, viz.,

I0 � 	
top


�u1
�0����u2

�0��J0�u1
�0�,u2

�0��W�u1
�0�,u2

�0��du1
�0�du2

�0�

� �W�n0�/���� , �68�

where J0=−�� /���V /�u1
�0�= �� /���� ln W /�u1

�0�. Hence we
have the TST escape rate for spins as determined from Eqs.
�64�, �67�, and �68�, viz.,

�i �
��S + 1/2��1 − e−	i�

2���

WS�n0�
WS�ni�

. �69�

To compare this equation with the classical TST equation
�62�, we can write the resulting escape rate formula for spins
in the canonical form

� � ��i/2���e−��V, �70�

where

� = �S + 1/2��1 − e−	i�/S	i and ��V = ln�WS�n0�/WS�ni��

are, respectively, the quantum correction factor and effective
barrier height, i.e., the argument of the exponential. Here
both ��V and � strongly depend on the spin number S
yielding ��V→��Vcl and �→1, respectively, in the clas-
sical limit, S→�. For example, for a uniaxial system with

Hamiltonian �ĤS=−
ŜZ
2, we have37
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�i = 
�2S − 1�/���� ,

� =
2S + 1

2
S�2S − 1�
�1 − e−
�2S−1�� ,

��V = 
S2 − ln
�2S�!
22S �

m=−S

S
e
m2

�S + m�!�S − m�!
.

Just as the classical case, having evaluated the escape rate �i
for a particular anisotropy, one can calculate the reversal
time at finite temperatures. In particular, by equating reversal
time to measuring time this calculation allows one to esti-
mate the switching field curves at finite temperatures just as
the classical theory.43 One should remember, however, that
TST always implies that the dissipation to the bath does not
affect the escape rate. Nevertheless, the results should still
apply in a wide range of dissipation for which thermal noise
is sufficiently strong to thermalize the escaping system yet
insufficient to disturb the thermal equilibrium in the well,
i.e., an equilibrium distribution still prevails everywhere in-
cluding the saddle point. In the context of the classical
Kramers escape rate theory,16 this is the so called intermedi-
ate damping case.

IX. DISCUSSION

We have amply demonstrated that the phase-space method
formally representing the quantum mechanics of spins as a
statistical theory in the classical configuration space of polar
angles �� ,�� �which are now the canonical variables� may
be used to construct equilibrium distribution �Wigner� func-
tions for nonaxially symmetric model spin Hamiltonians.
The Wigner function may be represented using the Wigner–
Stratonovich map as a Fourier series just as the correspond-
ing classical orientational distribution and transparently re-
duces to it in the classical limit. Moreover, relevant quantum
mechanical averages may be calculated in a manner analo-
gous to the corresponding classical averages using the Weyl
symbol of the appropriate quantum operator. The Wigner
functions can now be applied to important magnetic prob-
lems such as the equilibrium magnetization, switching, and
hysteresis curves, which require only a knowledge of equi-
librium distributions. Two examples given in the paper are
the estimation of the reversal time of the magnetization using
TST and the spin dependence of the switching fields as gen-
eralized to arbitrary magnetocrystalline anisotropy-Zeeman
energy Hamiltonians by Thiaville.8 In the latter case, it is
obvious that the behavior of the switching field curves and/or
surfaces as a function of spin size may be determined using
the Weyl symbol of the relevant Hamiltonian and the phase-
space representation generated by the Wigner–Stratonovich
map just as the solution of the classical problem. This fact is
important particularly from an experimental point of view as
the transition between magnetic molecular cluster and single-
domain ferromagnetic nanoparticle behavior is essentially
demarcated via the hysteresis loops and the corresponding
switching fields.5 Yet another advantage of the phase-space
representation is that via TST as corrected for spin size ef-

fects �which is readily apparent from that representation� it is
possible to predict the temperature dependence of the switch-
ing fields and corresponding hysteresis loops within the limi-
tations imposed by TST. This is likely to be of interest in
experiments seeking evidence for macroscopic quantum tun-
neling where the temperature dependence of the loops is cru-
cial as the loops are used5 to demarcate tunneling behavior
from thermal agitation behavior.

We have refrained in this paper from a detailed discussion
of nonequilibrium phenomena involving quantum master
equations in the phase-space representation which in the
classical limit reduce to the Fokker–Planck equation �this
will be given elsewhere�. An example of such equations oc-
curs in the treatment of the relaxation of an assembly of
noninteracting spins �see, e.g., Refs. 44–47�. Here a knowl-
edge of the equilibrium phase-space distribution is important
in two respects. The first is in formulating the initial condi-
tions for their solution as the appropriate quantum equilib-
rium distribution must now play the role of the Boltzmann
distribution in the corresponding classical problem. Sec-
ondly, the equilibrium quantum distribution plays a vital role
in the determination of the diffusion coefficients in a quan-
tum master equation because this distribution must be the
stationary solution of that equation.47–49 This fact, which is
analogous to Einstein and Smoluchowski’s imposition of the
Maxwell–Boltzmann distribution as the stationary solution
of the Fokker–Planck equation in order to determine diffu-
sion coefficients in that equation, will allow one to calculate
the diffusion coefficients in a quantum master equation in
like manner. We remark, however, that calculation of the
diffusion coefficients for nonaxially symmetric potentials is
much more complicated than the corresponding task for axial
symmetry since two canonical variables are involved rather
than the single polar angle �. The restriction to axial sym-
metry also gives rise to considerable mathematical simplifi-
cations since the quantum master equation now has essen-
tially the same mathematical form as the classical Fokker–
Planck equation in the single coordinate �. Hence results
already available for that equation such as formulas for the
mean first passage time, integral relaxation time, etc., may be
directly carried over to the quantum case.47 This is not so for
nonaxially symmetric potentials as the two variables in-
volved give rise to a perturbation problem similar to that
encountered in solving the Wigner problem for point par-
ticles in classical phase space. In the context of nonequilib-
rium effects in nonaxially symmetric potentials the most im-
portant quantity is the relaxation time as calculated from the
appropriate quantum master equation as that allows one to
determine the dependence of the quantum escape rate and so
the reversal time on the dissipative coupling to the heat bath.
The TST escape rate as calculated from the Wigner function
is also important in this context as it constitutes the so called
intermediate damping escape rate which is the limit of appli-
cability of the intermediate to high damping quantum Kram-
ers rate and may be obtained from that rate by letting the
dissipation tend to 0. Thus the TST rate provides an impor-
tant benchmark for both analytical calculations of the escape
rate incorporating dissipation using quantum rate theory and
numerical results obtained from the appropriate quantum
master equation as well as allowing one to incorporate ther-
mal effects in the switching fields.
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APPENDIX: GENERALIZED COHERENT STATES AND
WIGNER–STRATONOVICH TRANSFORMATION

As an example of a generalized coherent state representa-
tion of a spin system, one may consider the SU�2� coherent
states �S ,� ,�� defined as50,51

�S,�,�� = �1 + �z�2�−SezŜ−�S,S� , �A1�

where z=tan�� /2�ei� and Ŝ−= ŜX− iŜY. The expansion of
�S ,� ,�� in the orthonormal basis of the eigenfunctions �S ,m�
of the spin operators ŜZ and Ŝ2 is given by

�S,�,�� = cos2S��/2� �
m=−S

S � �2S�!
�S + m�!�S − m�!

��tan��/2�ei��S−m�S,m� , �A2�

where the basis spin functions �S ,m� are defined as40

�S,S� =�
1

0

]

0
�, �S,S − 1� =�

0

1

]

0
�, . . . , �S,− S� =�

0

0

]

1
� .

The coherent states �S ,� ,�� possess the completeness prop-
erties so that an arbitrary quantum state of the spin system
can be written in terms of �S ,� ,��.50,51

The coherent state �S ,� ,�� can also be presented in an
equivalent form as

�S,�,�� = �S,S��,��eiS�,

where �S,��� ,�� are the helicity basis functions defined as40

�S,���,�� = �
m=−S

S

Dm,�
S ��,�,0��S,m� .

Here Dm,�
S �� ,� ,�� are the Wigner D functions.40 The

equivalence of both forms can be proved by noting that40

Dm,�S
S ��,�,0�e�iS� =� �2S�!

�S + m�!�S − m�!
cos2S��/2�

���tan��/2�e�i��S�m.

Now one may introduce the transformation kernel ŵ as33,50,51

ŵ = �S,�,��
S,�,��

= �2S�! cos4S��/2�

� �
m,m�=−S

S
e−i�m−m����tan��/2��2S−m−m�

��S + m��!�S − m��!�S + m�!�S − m�!
�S,m�

�
S,m�� . �A3�

By noting Eq. �A2� and that40

�S,m�
S,m�� = �
L=0

2S �2L + 1

2S + 1
CS,m�,L,m−m�

S,m TL,m−m�
�S� ,

we have the kernel ŵ in terms of the polarization operators
TL,M

�S�

ŵ = �S,�,��
S,�,��

=
�2S�! cos4S��/2�

�2S + 1
�
L=0

2S

�
M=−L

L

�
m=−S

S

TL,M
�S�

�
�2L + 1e−iM��tan��/2��2S−2m+MCS,m−M,L,M

S,m

��S + m − M�!�S − m + M�!�S + m�!�S − m�!
.

�A4�

Further simplification of Eq. �A4� is achieved using the
known expression for the spherical harmonics, viz.,40

YL,−M =
�− 1�M�2S�! cos4S��/2��2L + 1

�4�CS,S,L,0
S,S

� �
m=−S

S
CS,m−M,L,M

S,m e−iM��tan��/2��2S−2m+M

��S + m − M�!�S − m + M�!�S + m�!�S − m�!

�A5�

and Y
L,M
* = �−1�MYL,−M. Thus we have ultimately

ŵ =� 4�

2S + 1 �
L=0

2S

�
M=−S

S

CS,S,L,0
S,S Y

L,M
* TL,M

�S� , �A6�

so that the kernel ŵ given by Eq. �A3� coincides with the
operator ŵ−1 defined by Eq. �7�.
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